

© ЗАО "ВНИИДРЕВ"

Вестник ВНИИДРЕВ

Выпуск 3 (8) за 2014 год

Уважаемые коллеги!

В 2014 году ЗАО «ВНИИДРЕВ» возобновляет выпуски электронного журнала «Вестник ВНИДРЕВ» в рамках проекта сайта vniidrev.balabanovo.ru. Идя на встречу пожеланиям участников прошедшей 19 и 20 марта этого года 17—ой научно-практической конференции «Состояние и перспективы развития производства древесных плит», в выпусках «Вестник ВНИДРЕВ» будут опубликованы тексты докладов, представленных на этой конференции.

Обращаем Ваше внимание на то, что копирование содержимого докладов запрещено согласно условиям охраны авторских прав. Доклады будут публиковаться периодически в течение года. Приобрести напечатанный полный сборник докладов Вы можете в ЗАО «ВНИИДРЕВ»:

- e-mail: vniidrev@pochta.ru
- тел/факс +7(48438) 2-21-62.

Содержание

C_{-}	
(T	r
\sim 1	ь

1.	В.А. Бардонов, Б.К. Иванов. Об особенностях проведения испытаний древесных материалов камерным методом в соответствии с новой редакцией стандарта	2
2.	В.В. Васильев, А.А. Багаев, Н.И. Петухов. Организация производства теплоизоляционного материалана основе древесного волокна	4
3.	Н.В. Елхова. Выработка опытной партии древесностружечных плит с содержанием формальдегида 4 мг/100г плиты по перфораторному методу	
4.	И.А. Гамова, С.Д. Каменков. Термопласты и древесина1	0
5.	Т.Н. Войтова, А.А. Леонович. Сравнительный анализ амидофосфата ЛШ и карбамида как акцепторов формальдегида	13
6.	С.А. Дождиков, О.Ф.шишлов, В.В.Глухих. Изучение влияния полиуретановой системы «резикард» на водостойкость и токсичность древесностружечных плит	

ОБ ОСОБЕННОСТЯХ ПРОВЕДЕНИЯ ИСПЫТАНИЙ ДРЕВЕСНЫХ МАТЕРИАЛОВ КАМЕРНЫМ МЕТОДОМ В СООТВЕТСТВИИ С НОВОЙ РЕДАКЦИЕЙ СТАНДАРТА

В.А. БАРДОНОВ — ООО «ЛЕССЕРТИКА», Б.К. ИВАНОВ — ЗАО «ВНИИДРЕВ»

В середине 2013 г Центром «ЛЕССЕРТИКА» была подготовлена новая редакция стандарта [1], которая значительно отличается от редакции, существующей с 1995 г. В проекте стандарта учтены основные нормативные положения европейского регионального стандарта [2] и международного стандарта [3], а проведённая корректировка процедуры испытаний является дальнейшим развитием камерного метода в связи с повышением экологических требований к мебели, древесным и полимерным материалам и с учётом специфических отечественных условий и требований/ Пересмотр действующего стандарта был предпринят в целях соответствия современным международным требованиям к процедуре испытаний и используемому оборудованию, в том числе для испытания экологически чистой продукции с низким выделением формальдегида. В проект стандарта так же вошли методики количественного определения фенола и аммиака в воздухе испытательной камеры. Другими отличительными чертами новой редакции стандарта [1] являются:

- 1. распространение методики проведения испытаний на широкий круг материалов, включая древесные материалы и изделия из них, полимеры, полимерные пленки и декоративные пластики и так далее;
- 2. дополнены и ужесточены требования к конструкции испытательной (климатической) камеры;
- 3. предусматривается кондиционирование образцов перед проведением испытаний;
- 4. кромки образцов материалов, кроме стеновых панелей и половых покрытий, герметизируют частично;
- 5. стационарность концентрации определяемого вещества определяют по более строгим критериям.

Изменения в процедуре испытания, по сравнению с прежней, должны приводить к изменению результатов испытаний, что особенно касается испытаний облицованных материалов с частичной

герметизацией кромок.

В связи с этим нами были проведены испытания ряда материалов в соответствии с указанными выше требованиями. Испытания проводили автоматической испытательной камере ЗАО «ВНИИДРЕВ», которая была сконструирована и изготовлена в ООО «ЛЕССЕРТИКА» [4]. Всего с июня 2013 г по январь 2014 г испытано 14 образцов облицованных включительно было древесностружечных (ЛДСП) и древесноволокнистых (ЛМДФ) плит 9-ти отечественных и зарубежных производителей. Для 10-ти образцов параллельно были проведены испытания с полностью герметизированными кромками. Одновременно были проведены испытания 13-ти образцов фанеры толщиной от 3 мм до 21 мм марок ФК и ФСФ и плоско-клееные детали мебели 9-ти отечественных производителей. Результаты испытаний представлены в таблице.

Таблица 1 — Результаты испытаний ЛДСП, ЛМДФ и фанеры камерным методом (ГОСТ 30255 ред.2013 г.)

	3н	ачение при ист	тытании
Наименование показателя	с герметиз	и ЛМДФ ированными иками	фанеры с частично герметизирован-
	частично	полностью	ными кромками
Количество испытаний	14	10	13
Минимальное значение, мг/м ³	0,016	0,003	0,002
Максимальное значение, мг/м³	0,133	0,016	0,084
Среднее значение, мг/м ³	0,054	0,010	0,024
Среднее квадратичное отклонение	0,0329	0,0045	0,0212

Значение коэффициента парной корреляции (Пирсона) между выборками результатов испытаний облицованных материалов с полностью и частично герметизированными кромками составило r=0,458. При таком низком значении указанного коэффициента поиск коэффициентов линейной регрессии между указанными выборками не целесообразен. Из данных в таблице видно, что в подавляющем большинстве случаев испытаний ЛДСП и ЛМДФ может быть получено соответствие используемому в настоящее время нормативному значению выделения формальдегида не более $0,124 \, \text{мг/м}^3$. В проведенной серии испытаний образцов ЛДСП и ЛМДФ только один образец показал выделение формальдегида больше этого значения.

Одновременно в рассмотренной выборке результатов испытаний ЛДСП и ЛМДФ присутствовали только четыре результата, которые не превышали значение $0,035~\text{мг/m}^3~(\Pi Д K_{\text{мр}})$. При испытании образцов фанеры только два образца показали выделение формальдегида больше этого значения.

Крупный потребитель древесных материалов отечественного производства ф. ИКЕА, имеет собственные требования по выделению формальдегида [2, 5] не более 0,074 мг/м 3 . Сравнение полученных результатов с требованиями [5] показало, что в выборке присутствовали два случая несоответствия результата испытаний ЛДСП и ЛМДФ этим требованиям. При испытании образцов фанеры был один случай такого несоответствия.

Выводы и рекомендации

- 1. Необходимо продолжить исследования с целью дальнейшего набора данных для статистической обработки более полных выборок.
- 2. Необходимо провести исследования по выявлению влияния на величину выделения формальдегида облицованными древесностружечными и древесноволокнистыми плитами от:
 - а) содержания формальдегида в плите-основе;
- б) различных параметров технологии облицовывания и свойств пленки, пропитанной термореактивными полимерами.

Список литературы:

1. ГОСТ 30255-95. Мебель, древесные и полимерные материалы. Метод определения выделения формальдегида и других вредных летучих

химических веществ в климатических камерах.

- 2. EN 717-1. Плиты древесные. Определение выделения формальдегида. Часть 1. Определение выделения формальдегида с использованием испытательной камеры.
- 3. ISO 12460-1. Плиты древесные. Определение выделения формальдегида. Часть 1. Определение эмиссии формальдегида методом однокубовой камеры.
- 4. Иванов Б.К., Тупикин С.И. . Автоматизация испытаний древесных материалов камерным методом// в кн. «Состояние и перспективы развития производства древесных плит»: материалы научно-практич. конференции 17-18 марта 2010 г. Балабаново, 2010, с . 158.
- 5. Спецификация требований по формальдегиду для материалов и изделий на основе древесины ф. ИКЕА. IOS MAT 003. Приложение 2. Методы тестирования и ПДК для готовых изделий или материалов готовых изделий.

ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ДРЕВЕСНОГО ВОЛОКНА

В.В. ВАСИЛЬЕВ, А.А. БАГАЕВ - СПБГЛТУ H.И. ПЕТУХОВ - ООО «ТИЗОМ»

В настоящее время в России интенсивно развивается малоэтажное домостроение. За 2002-2012 годы объем индивидуального жилищного строительства (ИЖС) увеличился с 14,2 до 28,4 млн. м² в год, что составляет 200 % к 2002 году. В то же время объем ИЖС из древесины (в составе всего ИЖС) увеличился с 2,2 до 7,1 млн. м² в год, что составляет 323 % к 2002 году, то есть рост ИЖС из древесины наблюдается более опережающими темпами, чем весь объем ИЖС. Это говорит о все более растущем спросе на дома, возводимые с применением технологий деревянного домостроения. По прогнозам Ассоциации Деревянного Домостроения к 2020 году площадь ИЖС из древесины увеличится до 16...18 млн. м² в год.

Производятся и сооружаются деревянные дома различного типа, однако основную долю в 65...70 % составляют дома каркасной и панельной конструкций. Преимущество их перед другими типами домов обусловлено большим ассортиментом проектных вариантов, коротким сроком строительства, высокими эксплуатационными характеристиками и относительно невысокими затратами при строительстве и эксплуатации. Указанные преимущества обусловлены тем, что элементы домов в виде готовых панелей или модулей производят в заводских условиях, и на строительной площадке осуществляется только их монтаж в течение нескольких рабочих дней.

При производстве панелей и модулей используют различные материалы целевого назначения. Большое значение имеют теплоизоляционные материалы (ТИМ), которые обеспечивают защиту дома от потери тепла. Расход их на 100 м^2 дома составляет $45...70 \text{ м}^3$.

В настоящее время в качестве ТИМ применяют материалы на неорганической и органической основе. К материалам первого типа относятся ТИМ на основе стеклянного или базальтового волокна, ко второму типу — пенопласты (пенополиуретан, пенополиэтилен, пенополистирол).

Все эти материалы имеют серьезные недостатки. К ним относится

выделение вредных веществ, образующихся при разрушении в процессе эксплуатации связующих и полимеров, а также при горении ТИМ на органической основе. Кроме того, материалы на неорганической основе имеют тенденцию к оседанию, а ТИМ на органической основе не обладают способностью «дышать» и довольно сложно придать им огнезащищенные свойства.

Перспективным экологически безопасным материалом могут быть ТИМ на основе природных волокон. В строительной практике уже нашли применение «Эковилла» (производитель Финляндия и другие страны Европы) и «Эковата» (Россия). Для их производства используют обрезки чистой бумаги, которые размалывают совместно с антипиреном (борная кислота) и антисептиком (бура). В процессе сухого размола происходит распушение бумаги на целлюлозные волокна и распределение химикатов по объему ТИМ.

Недостатками «Эковиллы» и «Эковаты» являются ограниченность сырьевой базы в виде чистой макулатуры, довольно высокая стоимость целлюлозы и продолжительное тление, - до 70 с, при проведении огневых испытаний [1]. Последнее обусловлено тем, что при сухом размоле бумаги антипирен распределяется только по поверхности целлюлозных волокон и не может препятствовать тлению внутри волокон.

Представляется перспективным использовать для производства ТИМ более дешевое по сравнению с целлюлозой древесное волокно. Оно используется при изготовлении древесноволокнистых плит (ДВП) и производится на специальном высокотоннажном оборудовании.

Для повышения качества ТИМ на основе древесных волокон целесообразно использовать антипирены и антисептики в виде водных растворов, чтобы они пропитали волокна. Это позволит устранить тление, сократить расход химикатов и повысить стабильность свойств материала по объему вследствие отсутствия эффекта просыпания порошковых добавок. Технологии изготовления «Эковиллы» и «Эковаты» не предусматривают операцию сушки, поэтому используются только сухие химикаты, а вот промышленное производство древесного волокна позволяет последовательно произвести изготовление волокна, обработку его растворами антипирена и антисептика, а затем высушить модифицированное волокно.

В настоящее время в России действуют 10 линий ДВП сухого способа (МД Φ) и более 30 линий ДВП мокрого способа. Опыт

кризисного периода 2008...2010 гг. показал, что безболезненно преодолели кризис плитные предприятия с широким ассортиментом выпускаемой продукции, например, производящие плиты мебельного и строительного назначения. Таким образом, действующие заводы ДВП могут быть заинтересованы в расширении номенклатуры продукции.

Наиболее неясные перспективы у российских предприятий ДВП мокрого способа. Опыт мировой практики показывает, что эти производства повсеместно закрываются в силу высокого потребления свежей воды. Часть российских заводов ДВП мокрого способа уже сейчас работает не на полную мощность. Это связано с сокращением заказов от потребителей, отсутствием достаточных оборотных средств, изношенностью оборудования отливной линии и пресса. Все это приводит к простоям завода до половины и более их мощности.

В то же время заводы ДВП располагают высокопроизводительным размольным оборудованием, которое может быть использовано для производства теплоизоляционных материалов по технологии сухого способа без потребления воды. ТИМ на основе древесного волокна могут производиться в виде насыпного и листового материалов. Выпуск их может быть организован как путем модернизации действующих, так и строительством новых специализированных производств. Наименее затратным является модернизация действующих предприятий ДВП мокрого способа путем создания в них специализированного участка изготовления ТИМ.

На первом этапе целесообразно организовать производство ТИМ насыпного типа (ТИМ-Н). Он представляет собой древесное дефибраторное волокно, обработанное антипиреном и антисептиком, и высушенное до влажности 5...12 %. ТИМ-Н поставляется в сыпучем виде в мешках различной емкости.

В России в соответствии с Федеральным законом № 123-ФЗ от 22.07.2008 «Технический регламент о требованиях пожарной безопасности» и ГОСТ 30244-94 [2] строительные материалы по горючести подразделяют на четыре группы: слабогорючие (Г1), умеренногорючие (Г2), нормальногорючие (Г3) и сильногорючие (Г4). В зависимости от назначения теплоизоляционные материалы должны отвечать требованиям к группам Г2 и Г1.

Для производства материала группы горючести $\Gamma 2$ (ТИМ-Н- $\Gamma 2$) расход абс. сух. антипирена к абс. сух. волокну составляет 15 %, для ТИМ-Н- $\Gamma 1$ группы горючести $\Gamma 1$ – 25 %. Кроме того в состав химикатов

для обработки волокна входят антисептик и структурообразователь в количестве 2..5 %.

В табл. 1 приведен расчет себестоимости производства 1 т ТИМ-H- Γ 1. Затраты на изготовление этого материала более высоки по сравнению с ТИМ-H- Γ 2 за счет увеличенного содержания химикатов. Расчет производственных затрат произведен на основе данных по производству MDF [3].

Для организации производства ТИМ-Н необходимо установить в цехе дополнительное оборудование для приготовления и введения химических добавок, сушки волокна, хранения и упаковки ТИМ. Перечень и затраты на приобретение необходимого оборудования приведен в табл. 2. Ориентировочный расчет провели путем умножения 1 кг массы технологического оборудования на 300 руб. (10 долларов США).

Цех ДВП мокрого способа производит плиту толщиной 3,2 мм плотностью 950 кг/м³. При мощности цеха 8 млн. м²/год масса плиты в год составит: $8000000*0,0032*950 = 24\ 320\ 000\ кг\ ДВП$.

Таблица 1 - Общие производственные затраты на производство 1 т ТИМ-Н-Г1

11-1 1	
Статья расходов	Затраты на 1 т ТИМ-Н,
	руб.
Древесное сырье	1654,00
Материалы (химикаты)	6868,00
Электроэнергия	345,60
Топливо	172,80
Тех. обслуживание	374,40
Зарплата и начисления	78,12
Амортизация оборудования (10 лет)	364,32
Амортизация здания (20 лет)	21,60
Себестоимость	9878,84
Продажная цена (+ 25 %)	12348,55

ДВП мокрого способа имеет следующий состав: древесина а.с. – 100 м.ч.; влага — 6 м.ч.; смола $\Phi\Phi C$ — 1 м.ч.; парафин — 1 м.ч.; всего 108 м.ч. Доля а.с. волокна в плите составляет 100*100/108 = 92,6 %.

При загрузке размольного оборудования на производство ТИМ-Н на уровне 30% от мощности цеха ДВП в год будет произведено 0.3*24320000*0.926 = 6.756.096 кг а.с. волокна.

Таблица 2 - Затраты на приобретение оборудования для производства ТИМ-Н

Наименование оборудования	Количество,	Цена,
	шт.	руб.
Емкость для приготовления	3	3 600 000
химикатов		3 000 000
Расходные емкости	3	2 700 000
Сушилка волокна	2	9 000 000
Смеситель для волокна	1	750 000
Бункер волокна	1	1 800 000
Линия упаковки	1	1 200 000
Итого		19 050 000
Вспомогательное оборудование (15 %)		2 860 000
Bcero		21 910 000

Состав ТИМ-Н-Г1 в м.ч.: древесина а.с. -100; влага -6; химикаты (антипирены, антисептик, структурообразователь) -27. Всего -133 м.ч. На основе волокна цеха ДВП можно произвести 1,33*6756096=8985608 кг ТИМ-Н-Г1 или 8986 т.

1 т Эковаты стоит 25 тыс. руб. При сравнении двух продуктов годовой экономический эффект (Э) от производства ТИМ-Н-Г1 составит:

$$\Theta = (\coprod_1 - \coprod_2) *A - K*3_{06.} = (25000 - 12348,55) *8986 - 0,1*21910000$$

= 113 685 929,70 - 2 191 000 = 111 494 929,70 py6.

где Ц $_1$ – цена 1 т Эковаты, руб.; Ц $_2$ – цена 1 т ТИМ-Н-Г1, руб.; А – производительность участка ТИМ-Н, т/год; К – коэффициент амортизации оборудования на 10 лет, равный 0,1; $3_{\text{об.}}$ – затраты на приобретение оборудования для производства ТИМ-Н, руб.

Расчеты показывают, что организация дополнительного производства в цехе ДВП имеет высокую экономическую эффективность и быструю окупаемость. При этом необходимо отметить, что Эковата

сертифицирована как материал, отвечающий требованиям для группы горючести Γ 2, а наши расчеты выполнены для ТИМ-Н- Γ 1, отвечающего требованиям для группы горючести Γ 1.

На втором этапе модернизации заводов ДВП мокрого способа предлагаем расширить участок изготовления ТИМ-Н и организовать производство листового теплоизоляционного материала ТИМ-Л. Для этого можно использовать имеющийся в цехе многоэтажный пресс, а также технологии прессования сухого ковра или образования композиционного материала, получаемого путем совместного напыления волокна и клея с последующей сушкой.

Рецептура ТИМ на основе древесного волокна запатентована в России. Оценка степени огнезащищенности материала, проведенная в сертифицированной лаборатории МЧС России, показала, что он относится к слабогорючим (группа – Γ 1) по Γ 0СТ 30244 материалам.

Предлагаем предприятиям по производству древесноволокнистых плит обсудить возможность и целесообразность организации в цехе ДВП специализированного участка изготовления теплоизоляционного материала. Мы в свою очередь готовы представить рецептурные и технологические материалы для выполнения необходимых расчетов, провести лабораторные исследования по отработке модифицирующего состава и технологических режимов изготовления ТИМ применительно к условиям конкретного производства.

В работе по модернизации заводов ДВП проявили заинтересованность российские и зарубежные фирмы по производству оборудования для заводов древесных плит.

Список литературы:

- 1. Царев Г.И., Багаев А.А., Васильев В.В., Лебедева В.В., Петухов Н.И. Насыпной теплоизоляционный материал на основе древесного волокна//В кн.: Древесные плиты: теория и практика: 16-я Междунар. науч.-практ. конференция 20-21 марта 2013 г. СПб: Изд-во Политехнического ун-та, 201, с. 88-92.
- 2. ГОСТ 30244-94. «Материалы строительные. Методы испытаний на горючесть».
- 3. Волынский В.Н. Технология древесных плит и композитных материалов: Учебно-справочное пособие. СПб.: Лань, 2010.- 336 с.

ВЫРАБОТКА ОПЫТНОЙ ПАРТИИ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ С СОДЕРЖАНИЕМ ФОРМАЛЬДЕГИДА 4 МГ/100Г ПЛИТЫ ПО ПЕРФОРАТОРНОМУ МЕТОДУ

Н.В. ЕЛХОВА - ЗАО «ПЛИТСПИЧПРОМ»

Для выполнения современных требований получения ламинированных ДСП с содержанием формальдегида не более $0.01~\rm Mr/m^3$ необходимо использовать ДСП с пониженной эмиссией формальдегида не более $4~\rm Mr/100r$ плиты.

В феврале 2014 г. на линии ДСП в цехе древесных плит ЗАО «Плитспичпром» г. Балабаново произведена выработка опытной партии ДСП с целью получения плиты с содержанием свободного формальдегида в готовой плите 4 мг/100г плиты по перфораторному методу испытания. Объем партии плит составил 408 м³ при толщине плиты 25 мм.

Для производства плит использовали древесную стружку, получаемую на центробежных стружечных станках ДС-7A из технологической щепы. Породный состав сырья: 80 % осины и 20 % березы.

При выработке использовали меламинокарбамидоформальдегидную смолу ООО ТК «Уралхимпласт-Кроношпан» марки СВ 3300Е (г. Егорьевск). Физико-химические свойства смолы: массовая доля нелетучих веществ 68,42 %, рН 8,96, предельная смешиваемость с водой 1:4, условная вязкость по ВЗ-4 — 76 с, время желатинизации при $100~^{\circ}$ C — 59 с.

В качестве отвердителя использовали жидкое азотное удобрение марки КАС-32 согласно ТУ 2181-066-05761643-2004, изготовленное в ОАО «НАК Азот» г.Новомосковск. Расход отвердителя по действующему веществу (44 % от массы раствора) к абс. сухой смоле назначили 0,2 % в наружный слой и 4 % во внутренний слой.

В качестве гидрофобизатора использовали парафиновую эмульсию концентрацией 60 %. Расход парафина к абс. сух. стружке: наружный слой – 0,5 %, внутренний – 0,4 %.

Осмоление стружки внутреннего и наружного слоев про-ходило в быстроходных смесителях. Клеевой раствор и парафиновая эмульсия подавались через пневматические форсунки, установленные на корпусе смесителей.

Формировали трехслойный ковер. Доля наружных слоев — 36 %, внутреннего — 64 %.

Прессование плит форматом 11010×2500 мм произво-дили в однопролетном гидравлическом прессе. Режим пресссования: температура плит пресса 203-205 $^{\circ}$ С, максимальное давление 2,8 МПа, удельное время выдержки под давлением - 0,18 мин/мм толщины готовой плиты.

После горячего прессования плиты охлаждали в веерном охладителе, раскраивали на заданные размеры и шлифовали.

Испытания первых плит с использованием опытной партии смолы показали, что показатель растяжения перпендикулярно пласти имеет нижнее предельно допустимое значение. В связи с этим было увеличено осмоление среднего слоя.

Расход смолы составил $115 \, \text{г/m}^3$ плиты против нормативного $109 \, \text{кг/m}^3$. По слоям расход абс. сух. смолы к абс. сух. стружке составил: наружный слой $-13,2 \, \%$, внутренний $-9,8 \, \%$.

При увеличении расхода отвердителя в среднем слое до 5 % к смоле (сухое по сухому) увеличения значения растяжения перпендикулярно пласти плиты не наблюдалось.

Физико-механические показатели полученных ДСП представлены в таблице 1.

Проведение повторных испытаний плит через 12 часов выдержки в естественных условиях показали небольшое увеличение прочностных свойств плит с различным расходом отвердителя во внутренний слой. Полученные результаты представлены в таблице 2.

Выводы:

- 1. Использование при производстве ДСП толщиной 25 мм меламинокарбамидоформальдегидной смолы ООО ТК «Уралхимпласт-Кроношпан» марки СВ 3300Е (г. Егорьевск) и комплексного отвердителя КАС-32 позволили получить плиту с содержанием формальдегида 4 мг/100г плиты по перфораторному методу исследования.
- 2. Осмоление стружки, формирование ковра, прессование ДСП проводилось по стандартным технологическим режимам.
- 3. Для получения стабильных физико-механических показателей согласно требованиям ГОСТ-10632-2007 был увеличен расход смолы на $5.5\,\%$.

4. Увеличение расхода смолы и применение другого вещества в качестве катализатора привело к увеличению стоимости 1м³ на 3,7 %.

Список литературы:

Отлев И.А. Справочник по производству древесностружечных плит. – М.: Лесная пром –сть, 1990.

Таблица – 1.

Наименование	N <u>6</u> 1	Ne2	Ne3	№4	Ne5	9⊚√	Ne.7	N <u>e</u> 8	Ne9	№10
Толщина, мм	25,0	24,9	25,0	25,21	25,05	24,96	25,0	25,04	25,0	25,14
Плотность, кг/см3	624	662	646	627	979	809	651	633	628	637
Предел прочности при изгибе, МПа	12,6	6,91	16,4	15,0	11,7	12,0	13,0	12,9	13,0	12,8
Предел прочности										
при растяжении перпендикулярно	0,29	0,39	0,34	0,32	0,35	0,32	0,31	0,35	0,32	0,33
пласти плиты, МПа										
Токсичность пли- ты, мг/100 г плиты	4,4	3,6	-	3,5	1	1	1	, I		
Концентрация раб. р-ра наружного слоя, %	09	09	09	09	09	09	09	09	09	09
Концентрация раб. р-ра внутреннего слоя, %	66,1	66,1	1,99	66,1	66,1	66,1	66,1	66,1	66,1	66,1
% подачи отвердителя в наружный слой	0,2 кас32	0,2 кас32	0,2 кас32	0,2 кас32	0,2 Kac32	0,2 Kac32	0,2 кас32	0,2 Kac32	0,2 кас32	0,2 кас32
% подачи отвердителя во внутренний слой	4,0 Kac 32	4,0 кас32	4,0 кас32	4,5 Kac32	4,5 Kac32	4,5 Kac32	4,5 кас32	5,0 кас32	5,0 кас32	5,0 кас32

Таблица - 2.

		повтор		повтор		повтор		повтор
Наименование	№ 1	Nº 1	№ 2	№ 2	№ 3	% 3	No 4	№ 4
		12 nac		repes		через		через
		17 Jac.		12 4ac.		12 4ac.		12 yac.
Толщина, мм	25,0	24,9	25,0	25,01	25,0	24,96	25,14	25,1
Плотность, кг/см3	624	634	646	654	628	637	637	648
Предел проч-ности								
при изгибе, МПа	12,6	13,0	16,4	16,01	13,0	14,39	12,8	14.5
Тредел прочности								
три растяжении								
перпендикулярно	0,29	0,32	0,34	0,49	0,32	0,35	0.33	0.36
тласти плиты, МПа								
% подачи				0	(
отвердителя в	2,0	0,2	7,0	0,2	0,2	0,2	0,2	0,2
наружный слой	Kac37	Kac 32	Kac 52	кас32	кас32	кас32	кас32	кас32
% подачи	0 7	0.5	0.0		0	(0
отвердителя во	0,4	0,4	4,0	4,0	2,0	0,0	2,0	2,0
внутренний слой	Kac52	кас32	кас32	кас32	кас32	кас32	кас32	кас32

ТЕРМОПЛАСТЫ И ДРЕВЕСИНА

И.А. ГАМОВА, С.Д. КАМЕНКОВ - СПбГЛТУ

Древесина — высокопористый, гигроскопичный субстрат сложного химического состава с большим разнообразием функциональных и полярных групп. Она является активным наполнителем многих современных композиционных материалов: древесностружечных и древесноволокнистых плит, древесных слоистых пластиков, многочисленных прессмасс. Во всех этих материалах применяются термореактивные адгезивы в олигомерной форме — смолы. Смолы удобно применять в виде растворов, хорошо смачивающих наполнитель, а благодаря рекционноспособным группам они вступают во взаимодействие с компонентами древесины.

В настоящее время строительные материалы из древеснополимерных композиций (ДПК), и в том числе материалы с использованием термопластов (ДПКТ), появляются на рынке, вытесняя традиционные древесные материалы. Ежегодный темп прироста таких композитов составляет 20...30 % [1].

Фирма «Werzalit» одна из первых начала производство и поставку различных изделий из ДПК. Методами экструзии, литьём под давлением, прессованием, ротационным формованием из компаунда древеснополимерных композиций с использованием термопластов получают отделочные материалы и изделия. Садовый паркет, террасные и палубные доски, стеновые панели, уличная мебель, фасадные и кровельные материалы — это далеко не все возможности ДПКТ, так как композиция «древесина—полимер» дешевле пластических масс и надёжнее древесины. Изделия из ДПК отличаются высокой атмосферостойкостью, механической и химической устойчивостью, влаго- и водостойкостью, не подвержены короблению и растрескиванию, хорошо держат крепёж и не вызывают коррозии.

Считается, что для изготовления ДПКТ пригодны термопласты с температурой плавления менее 200 °С. Для получения ДПКТ могут быть использованы крупнотоннажные марки термопластов: поливинилхлорид (ПВХ), полистирол (ПС), полиэтилен (ПЭ), полипропилен (ПП) и другие полимеры. Привлекательно то, что можно применять и вторичные термопласты. В принципе любой термопласт может выступать в качестве полимерной матрицы, но при изготовлении ДПК должны учитываться

специфические особенности применяемых полимеров [1, 2].

Известны недостатки древеснополимерных материалов (ДПМ) изготовленных с использованием термопластов:

- трудность однородного распределения расплава полимера изза его высокой вязкости в композиции с измельчённой древесиной,
- низкая адгезия к древесному наполнителю, в частности наиболее распространённого термопласта полиэтилена (ПЭ).

Но при введении функциональных групп (гидроксильных и ацетатных) в ПЭ, обеспечивающих адгезию к древесине, повышаются как механические свойства, так и гидрофобность образцов [3].

Другим примером может служить использование ПВХ в качестве связующего вещества ДПКТ. Было показано, что под влиянием выделяющегося при нагревании ПВХ хлорида водорода повышается пластичность древесного наполнителя, увеличивается площадь контакт термопласт-древесина, что приводит к увеличению прочности при снижении расхода полимера [4].

В настоящей работе для получения ДПМ использовали мелкие древесные отходы (опилки) и два вида полистирола: полистирол общего назначения (ПС):

$$-\text{[CH}_2-\text{CH]}_n$$

и тройной сополимер стирола (АБС), содержащий дополнительно бутадиеновые и акрилонитрильные звенья. Как известно, нитрильные группы АБС обладают высокой полярностью, что является необходимым условием создания адгезионного взаимодействия между компонентами древесины и полимером:

$$\begin{array}{c|c} -\text{[}CH_2-\text{CH} \xrightarrow{}_{\text{n}} \text{[}CH_2-\text{CH}=\text{CH}-\text{CH}_2 \xrightarrow{}_{\text{m}} \text{[}CH_2-\text{CH}_2-\text{CH}]_{\text{k}} \\ | \\ C \equiv N \end{array}$$

Композиции для изготовления образцов ДПМ готовили двумя способами: способом сухого смешения компонентов и механотермическим способом. При сухом способе термопласт смешивали с опилками при комнатной температуре в двухвалковом смесителе с Z-образными лопастями. При механотермическом способе термопласт и опилки смешивали в пластосмесителе типа «Бенбери» при температуре 160 °C.

Изготовление образцов ДПМ проводили методом компрессионного прессования в замкнутой прессформе по следующему режиму: температура прессования — $170~^{\circ}$ С, удельное давление — 25~МПа, время выдержки — 1~мин/мм толщины материала с охлаждением материал до температуры $60~^{\circ}$ С.

Образцы ДПМ испытывали в соответствии с ГОСТ 11368–89. Определяли плотность образцов (р),. водопоглощение за 24 ч (Δ W), разрушающее напряжение при статическом изгибе ($\sigma_{\text{изг}}$), удельную ударную вязкость (а), твердость ($T_{\text{Б}}$), абразивный износ (Δ m) и теплостойкость ($t_{\text{в}}$) по методу Вика.

Результаты испытаний образцов ДПМ представлены в табл. 1 и 2.

Анализ представленных данных свидетельствует о том, что введение в структуру термопласта бутадиеновых и акрилонитрильных звеньев позволяет повысить механические свойства ПДМ.

Так, например, при содержании полимера в композиции в количестве 50 мас.% использование АБС позволяет повысить $\sigma_{\rm изг}$, в 1,5...1,6 раза, ударную вязкость — в 1,3...2,3 раза, уменьшить истираемость в 1,2 в зависимости от способа смешивания компонентов. Увеличение водопоглощения ПДМ при использовании АБС сополимера объясняется наличием в нем полярных групп $-C\equiv N$ групп.

Список литературы:

- 1. Николаев А.Ф., Крыжановский В.К., Бурлов В.В. и др. Технология полимерных материалов: Учеб. пособие / Под общ. ред. В.К. Крыжановского. СПб.: Профессия, 2008. 544 с.
- 2. Клёсов А.А. Древесно-полимерные композиты. СПб.: НОТ, $2010.-735~\mathrm{c}.$
- 3. Шкуро А.Е., Мухин Н.М., Глухих В.В. Изучение влияния винилацетатных звеньев в полимерной матрице и способа её получения на свойства ДПК. //16-я Междунар. научн.-практ. конференция, 20-21 марта 2013 г. СПь: Изд-во Политехнического ун-та, 2013, с.25.
 - 4. Гамова И.А., Каменков С.Д. Использование поливинил-хлорида

в качестве связующего вещества древеснополимерных материалов. //16-я Междунар. научн.-практ. конференция, 20-21 марта 2013 г. СПб: Издво Политехнического ун-та, 2013, с. 80.

Таблица 1 – Физико-механические показатели образцов ДПМ, полученных из композиций приготовленных механотермическим способом

полимер	Tab I	композиции,	$\rho, \text{KT/M}^3$	b	MV	c	Λm	<u>-</u>	-
	мас. %			MITS.	, 70	т.Пж/м.2	100,00	MIL	. 69°
	полимер	древесина		IVIIIa	0/	IN THAT IN	MI/CM	IVIIII	ر
	100	0	1060	51	0,2	2,7	35	1,61	118
	70	30	1130	35	0,7	2,5	47	1,72	121
ПС	50	50	1180	33	2,1	1,9	64	1,62	121
	40	09	1220	27	3,0	1,7	57	1,80	124
	100	0	1070	64	0,2	5,1	56	1,34	126
ABC	70	30	1140	64	6,0	2,2	48	1,37	119
	50	50	1220	54	2,1	4,5	52	1,62	125
	40	09	1210	41	2,8	3,5	70	1,42	124

Таблица 2 – Физико-механические показатели образцов ДПМ, полученных из композиций приготовленных сухим способом.

		.0			5	8	.c	8	9
ţ.	٦	126	141	142	175	138	146	148	149
$T_{ m b}$	MHa	1,23	0,70	0,61	0,40	1,24	1,20	0,90	0,46
Δm,	MI'/CM	49	16	79	83	47	22	09	69
a,	K/J/K/M²	3,6	4,2	4,1	3,5	4,8	4,5	5,2	5,4
ΔW,	%	4,0	16,2	20,2	33,0	4,0	6,0	8,5	12,3
Оил,	MIIa	45	45	44	30	89	62	60	23
رُطُ	KI'/MŽ	1160	1170	1180	1130	1190	1220	1230	1210
Состав композиции, мас. %	древесина	20	09	02	08	50	09	70	08
Cocrab Ko	полимер	20	40	30	20	20	40	30	20
Полимер	•		Ç) II			(- -	ADC	

СРАВНИТЕЛЬНЫЙ АНАЛИЗ АМИДОФОСФАТА ЛШ И КАРБАМИДА КАК АКЦЕПТОРОВ ФОРМАЛЬДЕГИДА

Т.Н. ВОЙТОВА - ЗАО «ЧЕРЕПОВЕЦКИЙ ФМК» А.А. ЛЕОНОВИЧ - СП6ГЛТУ ИМ. С.М. КИРОВА

В связи с вступлением России в ВТО назрела необходимость гармонизировать стандарты качества на различные виды продукции, в том числе и на древесностружечные плиты. В настоящее время подготавливаются изменения действующего в России ГОСТ 10632 «Плиты древесностружечные. Технические условия» и приближение его к европейскому стандарту EN 312 «Требования к древесностружечным плитам».

В частности, наряду с классами эмиссии формальдегида Е1 и Е2 вводится класс Е0,5, т. е. с содержанием формальдегида по перфораторному методу не более 4 мг/100 г абс. сух. плиты. Устанавливаются ограничения на использование плит класса Е2 для изготовления мебели. Для производства детской мебели, мебели для лечебных и учебных учреждений разрешается использовать исключительно ДСП класса Е0,5.

Однако некоторые предприятия в России продолжают выпускать ДСП класса эмиссии Е2. Контроль и оптимизация технологических факторов, влияющих на содержание формальдегида в ДСП, способны снизить его эмиссию на 15...20%. Но при уровне содержания формальдегида в плитах 12...15 мг/100 г (класс эмиссии Е2) это снижение окажется недостаточным и не приведет к показателям, которые удовлетворяли бы классу Е1. Применение так называемых маломольных смол отрицательно сказывается на прочности плит и не позволяет достичь класса эмиссии Е0,5.

Наиболее оптимальным решением является применение акцепторов – веществ, способных образовывать устойчивые во времени соединения с формальдегидом. Широко применяемым акцептором формальдегида является карбамид. Действие основано на способности выделяющегося превращении термическом аммиака при его молекулы формальдегида образованием присоединять C гексаметилентетрамина:

$$6CH_2O + 4NH_3 = (CH_2)_6N_4 + 6H_2O$$
.

Но аммиак снижает количество гидроксиметильных групп в КФО, что приводит к уменьшению адгезионной способности и снижению механической прочности отвержденного КФО и в целом ДСП. Кроме того, такой прием увеличивает время отверждения КФС и, естественно, снижает общую производительность линии.

Для создания огнезащищенных ДСП используется амидофосфат КМ [1]. В числе прочих достоинств отмечена его способность снижать содержание формальдегида в готовых плитах. На базе амидофосфата КМ на кафедре ТДКМ разработан специальный акцептор формальдегида с условным названием ЛШ. Требовалось оценить целесообразность замены карбамида на этот новый акцептор. Для определения влияния его на качество ДСП проведена работа по сравнительному анализу карбамида и акцептора ЛШ. В частности, установлено их влияние на адгезионное взаимодействие с древесиной.

Образцы лущеного березового шпона размером 400×400 мм равномерно пропитывали водными растворами карбамида и амидофосфата ЛШ с разной долей сухого акцептора, варьируя концентрацией раствора. После достижения постоянной массы при пропитке образцы сушили при температуре $100\,^{\circ}$ С до остаточной влажности 2...2,5 %. После высушивания образцы с содержанием сухих акцепторов от 0,3 до 1,5 % использовали в качестве среднего слоя при изготовлении фанеры. Все образцы прессовали при одинаковых условиях: удельное давление 1,6 МПа, температура $120 \pm 5\,^{\circ}$ С, продолжительность 7 мин. После изготовления образцы выдерживали в комнатных условиях в течение 24 ч и испытывали по DIN EN 314-1.03—2005 «Испытание фанеры на срез. Качество склеивания».

Результаты испытаний приведены в табл. 1 с указанием среднего арифметического (у), среднеквадратического (s) и ошибки среднего арифметического (m) значений.

Таблица $1 - \Pi$ рочность образцов фанеры на срез, $H/мм^2$

<u> </u>	<u> </u>	5405 qui	10P21 11th	cp c3, 12, 2			
Акцепторы	Доля а	кцептор	а в масс	е абс. су	х. древ	есины,	
и статистики			%	,)			
	0	0,3	0,5	0,7	1,0	1,5	
ЛШ:							
y	2,8	2,6	2,4	2,6	1,6	1,2	
S	0,083						
m	0,031 0,030 0,032 0,030 0,030 0,0						
Карбамид:							
y	2,8	2,7	2,3	2,6	1,7	1,1	
S	0,083	0,091	0,087	0,080	0,082	0,085	
m	0,031	0,033	0,030	0,030	0,035	0,030	

Примерно одинаковая прочность образцов фанеры соотносится с существенно различной водостойкостью, наблюдаемой в пользу обработки акцептором ЛШ. После выдержки образцов фанеры в воде клеевое соединение разрушилось у 40 % образцов с карбамидом и у 16 % образцов с ЛШ. Наилучшие показатели оказались у образцов с уровнем содержания акцептора 0,7 %. Эти образцы проверяли на выделение формальдегида методом газового анализа. Этот метод выбран для исключения погрешности, обусловленной влиянием самих акцепторов на определение содержания формальдегида перфораторным методом.

Выделение формальдегида, мг/(м²·ч), зависит от уровня содержания акцепторов и характеризуется следующими данными:

Фанера без акцептора	. 1,15
Фанера с акцептором ЛШ (0,3 %)	0,80
Фанера с акцептором ЛШ (0,7 %)	0,51
Фанера с карбамидом (0,7 %)	. 1,07

Для моделирования условий прессования ДСП провели следующий эксперимент. Образцы березового лущеного шпона размером 50×50 мм равномерно пропитывали растворами карбамида и ЛШ с расходом от 0,3 до 1,5 % по абс. сух. веществам. Образцы сушили до влажности 2...2,5 % и наносили связующее, состоящее из смолы КФК и отвердителя (25 %-й раствор (NH₄)₂SO₄). Расход связующего составлял 7, 8, 9 и 10 % от массы древесины по абс сух. веществам. Связующее наносили равномерно на

обе стороны образца. Количество наносимого связующего определяли весовым методом. Образцы шпона с нанесенным клеем помещали между деревянными колодками, т.е. моделировали клеевое соединение между древесными частицами в плите. Колодки с образцами закрепляли в струбцинах. Затяжку гаек струбцин производили динамометрическим ключом, добиваясь усилия сжатия во всех партиях 0,33 Н/мм². Струбцины с образцами помещали в сушильный шкаф и выдерживали при температуре 100 °С в течение 5 мин, затем охлаждали в течение 60 мин и разбирали. После выдержки в течение 24 ч образцы испытывали на прочность при растяжении перпендикулярно пласти. Всего было склеено по 7 образцов каждого вида.

Результаты испытаний приведены в табл. 2 для обоих акцепторов с максимальной ошибкой по прочности \pm 0,006 МПа.

При попытке смоделировать внесение акцептора в наружный слой, расход связующего для которого составляет 12% от массы древесных частиц, разрушение образца происходило по колодке, т. е. повышение расхода в этих пределах увеличивает прочность выше собственной прочности древесины.

Таким образом, анализируя полученные результаты, видим, что в варианте внутреннего слоя акцептор ЛШ препятствует установлению адгезионного взаимодействия в значительно меньшей степени, чем карбамид, тогда как в варианте наружного слоя влияние акцептора на прочность не проявляется. Тогда вытекает технологическая рекомендация: необходимо вводить акцептор только в наружные слои. При этом обеспечиваются показатели прочности ДСП в диапазоне, нормируемом ГОСТ 10632. Выделение аммиака при разложении акцептора ЛШ начинается при температуре 130 °С. Такое значение температуры достигается лишь в наружном слое ДСП. При введении водного раствора акцептора в наружный слой существует практическая возможность увеличить концентрацию смолы на количество введенной с акцептором воды.

Таблица 2 – Прочность образцов при растяжении перпендикулярно пласти МПа

imacin, wiiia								
Доля		Kap6	бамид	·		Л	Ш	·
акцептора			Pac	ход связ	зующег	0, %		
в шпоне, %	7	8	9	10	7	8	9	10
0,3	0,21	0,26	0,29	0,31	0,28	0,29	0,32	0,35
0,5	0,19	0,23	0,25	0,31	0,22	0,29	0,31	0,33
0,7	0,16	0,21	0,24	0,30	0,20	0,26	0,30	0,33
1,0	0,13	0,21	0,23	0,30	0,18	0,26	0,30	0,32
1,5	0,12	0,2	0,22	0,25	0,16	0,26	0,28	0,30
Без								
акцептора (контроль)	0,31	0,32	0,33	0,36	0,30	0,31	0,33	0,36

С учетом отмеченных особенностей на производственной линии выпущены образцы ДСП с подачей акцептора в наружные слои древесных частиц в количестве 1,0% от массы абс. сух. частиц. Результаты приведены в табл. 3.

При данной выработке по условиям производственной масштабности отсутствовала возможность оптимизировать режим горячего прессования ДСП и подобрать рецептуру. Данной выработке предшествовало опытно-промышленное изготовление на ЗАО «Череповецкий ФМК» партии ДСП с использованием акцептора ЛШ и получением плит класса эмиссии формальдегида Е0,5. Обязательным условием является выдержка плит в штабеле в течение 5 суток [2]. Данные табл. З подтверждают преимущества акцептора ЛШ перед карбамидом и указывает на возможность достижения класса эмиссии формальдегида Е0,5 при физико-механических показателях, удовлетворяющих требованиям EN 312.

Таблица 3 – Физико-механические показатели образцов ДСП

Наименование	Контроль	Карбами	Акцептор
показателя		Д	ЛШ
Плотность, $\kappa \Gamma/M^3$	675	675	680
Предел прочности			
при статическом	15,8	15,0	15,3
изгибе, МПа			
Предел прочности			
при растяжении	0,48	0,39	0,42
перпендикулярно			
пласти, МПа			
Содержание			
формальдегида,	6,3	5,8	4,5
мг/100 г абс. сух.			
плиты			

В целом следует, что акцептор ЛШ в меньшей степени влияет на прочность ДСП, чем карбамид при равном расходе, тогда как его использование для снижения содержания формальдегида более эффективно, чем при использовании карбамида. Отмечены технологические преимущества: 50 %-й раствор акцептора ЛШ способен храниться длительное время без изменения свойств, вязкости и внешнего вида. 50 %-й раствор карбамида при хранении кристаллизуется, что в значительной мере затрудняет использование в промышленных целях. Более низкая его концентрация влечет за собой введение избыточной влаги, на испарение которой необходимы большее время и большие энергозатраты.

Список литературы:

- 1. Леонович А.А., Шпаковский В.Г. Древесностружечные плиты. Огнезащита и технология: Монография. СПб.: Химиздат, 2012.-160 с.
- 2. Войтова Т.Н., Леонович А.А. Опытно-промышленное изготовление экологически доброкачественных ДСП // Древесные плиты: теория и практика / Под ред. А.А. Леоновича: 16-я Междунар. науч.-практ. конф., 20–21 марта 2013 г. СПб.: Изд-во Политехн. ун-та, 2013. С. 22–25.

ИЗУЧЕНИЕ ВЛИЯНИЯ ПОЛИУРЕТАНОВОЙ СИСТЕМЫ «РЕЗИКАРД» НА ВОДОСТОЙКОСТЬ И ТОКСИЧНОСТЬ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ

C.A. ДОЖДИКОВ, $O.\Phi.$ ШИШЛОВ - OAO «УРАЛХИМПЛАСТ» B.B.ГЛУХИХ — УГЛТУ

Наиболее широко используемый материал для отделочных работ и производства мебели — древесностружечная плита (ДСтП), основными недостатками которого является низкая стойкость к воздействию воды и токсичность, обусловленная выделением формальдегида, особенно для плит, изготовленных с применением карбамидоформальдегидной смолы в качестве связующего.

В данной работе изучен способ повышения водостойкости и снижения токсичности ДСтП путем замены стандартного связующего на полиуретановую систему марки «Резикард» производства ОАО «Уралхимпласт».

Система «Резикард» состоит из двух компонентов:

Компонент A— полиол на основе природного возобновляемого непищевого источника сырья - карданола (алкилфенол, получаемый из жидкости скорлупы орехов кешью и имеющий в мета-положении линейный углеводородный заместитель $C_{15}H_{31-2n}$ [1]).

Компонент Б – дифенилметандиизоцианат (МДИ)

Для оценки основных физико-механических характеристик были изготовлены лабораторные образцы однослойных ДСтП толщиной 16 мм с расчетной плотностью $750~{\rm kr/m^3}$.

Для определения технологических параметров процесса прессования ДСтП с использованием связующего «Резикард» предварительно был проведен эксперимент по композиционному плану Бокса - Уилсона с двукратным повторением опытов [2]. На основании данных эксперимента был проведен регрессионный анализ для получения экспериментально-статистических моделей свойств ДСтП. Графически зависимость свойств водопоглощение за 24 часа и разбухание по толщине за 24 часа от технологических параметров процесса прессования представлены на рисунках 2 и 3 соответственно.

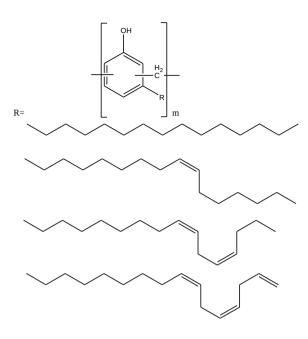


Рисунок 1 - Структура карданолсодержащего полиола

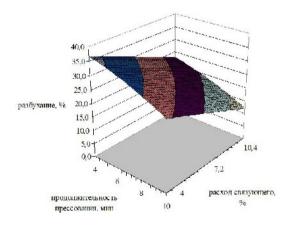


Рисунок 2 — Зависимость разбухания ДСтП в воде за 24 часа от расхода связующего и продолжительности горячего прессования

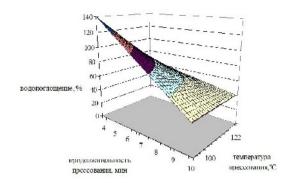


Рисунок 3 - Зависимость водопоглощения за 24 часа от температуры и продолжительности прессования ДСтП

Основываясь на полученной модели процесс прессования ДСтП с применением связующего «Резикард» осуществляли при следующих значениях технологических параметров:

- массовое соотношение компонентов системы «Резикард» A:Б 1:2;
- температура горячего прессования 139,2 °C;
- расход связующего, % от абсолютно сухой стружки 12 %;
- максимальное давление на первой ступени горячего прессования 2,5 МПа;
- максимальное давление на второй ступени горячего прессования 1,4 МПа;
- продолжительность первой ступени горячего прессования 1 минута;
- продолжительность второй ступени горячего прессования 9 минут.

Также, для сравнения физико-механических свойств по классической технологии, [3] были изготовлены лабораторные образцы ДСтП с использованием в качестве связующего карбамидоформальдегидной (КФМТ-10) и резольной фенолкарданолформальдегидной смол (СФЖ-3014K).

После прессования плиты кондиционировали при температуре 20 ± 2 °C и относительной влажности воздуха 65 ± 5 % в течение 3 суток. После чего все образцы были испытаны на основные физикомеханические показатели, в том числе и на соответствие требованиям ГОСТ 10632-2007. Результаты испытаний приведены в таблице 1.

Таблица 1 - Основные физико-механические характеристики образцов ДСтП

		Требование		
Наименование показателя	Резикард- 110	КФМТ-10	СФЖ- 3014К	ГОСТ 10632- 2007 для плит марок П-А
Предел проч- ности при из- гибе (среднее), МПа	16,92	13,86	19,07	не менее 13
Водопогло- щение за 2 ч. на образцах 25х25 мм, %	21,5	73,5	56,1	-
Разбухание по толщине за 2 ч. на об-разцах 25х25 мм, %	6,2	23,2	11,1	не более 12
Водопогло- щение за 24 ч. на образцах 50х50 мм, %	36,6	84,3	62,4	-
Разбухание по толщине за 24 ч. на образцах 50х50 мм, %	13,3	30,9	15,4	-
Предел проч- ности при растяжении перпендикулярн о пласти плиты, МПа	1,96	0,53	0,77	не менее 0,35

Кроме того, все образцы были проанализированы по методу WKI на количество формальдегида, выделяющегося из древесностружечной плиты. В таблице 2 приведены результаты испытаний в сравнении с плитой, изготовленной без применения связующих (спрессованная стружка).

Таблица 2 - Эмиссия формальдегида из образцов ДСтП

Связующее	Резикард- 110	КФМТ -10	СФЖ- 3014К	Без связую- щего
Эмиссия формальдегида мг/100 г	, 1,95	11,12	2,72	1,72

По данным, представленным в таблице 1, видно, что использование в качестве связующего системы «Резикард» позволяет значительно повысить не только водостойкость ДСтП, но и отдельные прочностные характеристики. По данным таблицы 2 — применение системы «Резикард» позволяет снизить уровень эмиссии формальдегида из ДСтП (особенно в сравнении с плитой, полученной с использованием карбамидоформальдегидной смолы) до уровня эмиссии формальдегида из древесины.

Также система «Резикард» не содержит воду, что позволяет упростить технологический процесс производства ДСтП, исключив стадию сушки стружки, а более низкая температура прессования – сократить энергозатраты.

Список литературы:

- 1. Talbiersky J., Polaczek J., Ramamoorty R., Shishlov O. Phenols from Cashew Nut Shell Oil as a Feedstock for Making Resins and Chemicals // OIL GAS Europeen Magazine. 2009. №1. p. 33-39.
- 2. Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической технологии. М.: Высш. шк., 1985.- 327 с.
- 3. Волынский В.Н. Технология стружечных и волокнистых древесных плит.- Таллинн: Дезидерата, 2004. 192 с.